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Abstract

Background: Although ultrahigh-throughput RNA-Sequencing has become the dominant technology for genome-
wide transcriptional profiling, the vast majority of RNA-Seq studies typically profile only tens of samples, and most
analytical pipelines are optimized for these smaller studies. However, projects are generating ever-larger data sets
comprising RNA-Seq data from hundreds or thousands of samples, often collected at multiple centers and from diverse
tissues. These complex data sets present significant analytical challenges due to batch and tissue effects, but provide
the opportunity to revisit the assumptions and methods that we use to preprocess, normalize, and filter RNA-Seq data
– critical first steps for any subsequent analysis.

Results: We find that analysis of large RNA-Seq data sets requires both careful quality control and the need to account
for sparsity due to the heterogeneity intrinsic in multi-group studies. We developed Yet Another RNA Normalization
software pipeline (YARN), that includes quality control and preprocessing, gene filtering, and normalization steps
designed to facilitate downstream analysis of large, heterogeneous RNA-Seq data sets and we demonstrate its use with
data from the Genotype-Tissue Expression (GTEx) project.

Conclusions: An R package instantiating YARN is available at http://bioconductor.org/packages/yarn.
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Background
RNA-Seq experiments using ultrahigh-throughput
sequencing-by-synthesis technologies were first performed
in 2008 and have since been used for large-scale transcrip-
tome analysis and transcript discovery in mammalian ge-
nomes [1–3]. Although hundreds of published studies have
used this technology to assay gene expression, the majority
of studies consist of relatively small numbers of samples.
There are many widely used methods for normalization
and analysis of expression data from modest numbers of
relatively homogeneous samples [4–6]. The workflow for
RNA-Seq typically includes basic quality control on the raw
reads and alignment of those reads to a particular reference

database to extract sequence read counts for each fea-
ture—gene, exon, or transcript—being assayed [7].
The resulting features-by-samples matrix is then fil-
tered, normalized and analyzed to identify features
that are differentially expressed between phenotypes
or conditions. Functional enrichment analysis is then
performed on these features [7].
There are now many large cohort studies, including the

Genotype-Tissue Expression project (GTEx) and The
Cancer Genome Atlas (TCGA) that have generated tran-
scriptomic data on large populations and across multiple
tissues or conditions to study patterns of gene expression
[8, 9]. The GTEx project is collecting genome-wide germ-
line SNP data and gene expression data from an array of
different tissues on a large cohort of research subjects.
GTEx release version 6.0 sampled over 550 donors with
phenotypic information representing 9590 RNA-Seq as-
says performed on 54 conditions (51 tissues and three
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derived cell lines). We excluded K562 from our analyses
since this leukemia cell line does not represent a healthy
tissue and is only a reference cell line unrelated to any
GTEx participants. GTEx assayed expression in 30 tissue
types, which were further divided into tissue subregions
[8]. After removing tissues with very few samples (fewer
than 15), we were left with 27 tissue types from 49 subre-
gions. This included 13 different brain regions and three
types of skin tissue. While GTEx broadly targeted body re-
gions, the sampling is uneven across these subregions,
with some sampled in nearly every donor and others sam-
pled in only a small subset. For example, there are some
tissues, such as the brain, in which many subregions were
sampled with the expectation that those samples might
exhibit very different patterns of expression.
Established methods for RNA-Seq analysis can be

used to make direct comparisons of gene expression
profiles between phenotypic groups within a tissue.
However, they are not well suited for comparisons
across multiple, diverse tissues, of which each exhibit
a combination of commonly expressed and tissue-
specific genes. This characteristic is a feature that
confounds most normalization methods, which gener-
ally assume the majority of expressed transcripts are
common across samples. Widely-used normalization
methods make assumptions that are valid only in fairly
consistent samples and assume that most genes are not
differentially expressed, that housekeeping genes are
expressed at equivalent rates, or that the expression distri-
butions vary only slightly due to technology [4–6]. In large
heterogeneous data sets, such as GTEx, these biological
assumptions are violated. When looking at diverse tissues,
or distinct patterns of expression, the use of the appropri-
ate quality control is necessary in order to make valid
comparisons of expression profiles.
Yet Another RNA-Seq normalization pipeline (YARN),

illustrated in Fig. 1, is a data preprocessing and
normalization pipeline that includes filtering poorly an-
notated samples, merging samples from “states” that
have indistinguishable expression profiles, filtering genes
in a condition specific manner, and normalizing to keep
global distributions while controlling for within group-
variability. While every step in the gene-by-sample fea-
ture matrix generation process can bias downstream re-
sults, our focus in this analysis, and in the YARN
package, is on the downstream effects of methods used
to filter and normalize data that has already been aligned
to a reference genome.

Implementation
YARN, shown in Fig. 1, is instantiated as a Bioconductor
(BioC version 3.4+) R package. YARN is built on top of
the Biobase Bioconductor package that defines the
ExpressionSet class, a S4 object class structure. Using

this class structure, multiple helper functions were de-
signed to help 1) filter poor quality samples – (checkMi-
sAnnotation), 2) merge samples derived from similar
sources (in our case, different sampling regions of the
“same” tissue) for increased power (checkTissuesTo-
Merge), 3) filter genes while preserving tissue or group
specificity – (filterLowGenes, filterGenes, filterMissing-
Genes), 4) normalize while accounting for global differ-
ences in tissue distribution (normalizeTissueAware), and
5) visualize the structure of the data (plotDensity,
plotHeatmap, plotCMDS). The full details of our pipe-
line methodology are available in Additional file 1. The
object-oriented architecture allows for future expansion
of the pipeline and the ExpressionSet class allows for in-
tegration with various other Bioconductor packages.
Example data sets have been curated and are available
within the packages. The R package instantiating YARN
is available at http://bioconductor.org/packages/yarn.

Results
Annotation quality assessment
The first step in any good data processing pipeline is
quality assessment to assure that samples are correctly
labeled. Reliable metadata is critical for studies and a
high rate of mis-assignment raises issues about the qual-
ity of the rest of the annotation provided for each sam-
ple. Some disease states and sex annotation metadata
can be checked with the RNA-Seq expression values
using disease biomarkers or sex chromosomal genes.
Misannotation is a common problem, with 46% of
studies potentially having had misidentified samples
[10]. We ourselves found it necessary to remove 6%
of samples in an analysis of sexual dimorphism in
COPD due to potential misannotation of the sex of
individual samples [11]. While correct sex assignment
is not a guarantee that the rest of the annotation is
correct, it provides a testable measure of the quality
of sample annotation in a study.
As a measure of the quality of the GTEx annotation,

we tested for the fidelity of sample sex assignment. We
extracted count values for genes mapped to the Y
chromosome in each sample, log2-transformed the data,
and used Principal Coordinate Analysis (PCoA) with
Euclidean distance to cluster individuals within each tis-
sue [12] (Additional file 1). While PCoA is similar to
Principal Components Analysis (PCA), PCoA has the
advantage that the distance between two samples allows
for an intuitive interpretation of the quality and reproduci-
bility of a sample. In addition, any appropriate distance
can be substituted and PCoA will preserve distances in
the decomposition. In contrast, the correlation-based
metric used in PCA cannot identify discrepancies if there
are large average shifts in expression.
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PCoA clearly separates samples into two groups in every
tissue using the Y chromosome genes. However, one sub-
ject, GTEX-11ILO, annotated as female, grouped with

males in each of the 13 tissue regions for which RNA-Seq
data was available (Additional file 2: Figure S1); we ex-
cluded GTEX-11ILO from further analysis. We later

Fig. 1 Preprocessing workflow for large, heterogeneous RNA-Seq data sets, as applied to the GTEx data. The boxes on the right show the number
of samples, genes, and tissue types at each step. First, samples were filtered using PCoA with Y-chromosome genes to test for correct annotation
of the sex of each sample. PCoA was used to group or separate samples derived from related tissue regions. Genes were filtered to select a normalization
gene set to preserve robust, tissue-dependent expression. Finally, the data were normalized using a global count distribution method to
support cross-tissue comparison while minimizing within-group variability
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learned that this individual had undergone sex-
reassignment surgery providing evidence that this quality
check had appropriately flagged an individual who was
genetically male.
The PCA plot in the first step of Fig. 1 and the col-

lected set in Additional file 2: Figure S1 were produced
using the functions checkMisAnnotation and plotCMDS
in the YARN package. While the majority of variation in
the GTEx data was present in the first two components
and clearly showed separation between the sexes, as a
rule of thumb one should check components until 90%
of the variation has been captured in the PCs. The
plotCMDS function is structured to return as many
components as requested for pairwise scatterplots, and
users can adjust the number of PCs to capture the de-
sired level of variation. Helper functions in YARN in-
clude filterSamples that can help the user remove
specified samples. Examples are included in YARN’s help
file and the Bioconductor vignette.

Merging or splitting sample groups
GTEx sampled 51 body sites (based on morphological
definitions) and created two cell lines (fibroblasts from
skin and lymphoblastoid cells from whole blood). How-
ever, not every site was sampled in every individual. Fur-
ther, there were often multiple sites sampled from the
same “organ” (for example, sun exposed and non-
exposed skin, or transverse and sigmoid colon), but the
GTEx consortium did not report testing whether such
samples exhibited fundamental differences in gene ex-
pression or if they were effectively indistinguishable. Our
interest in analyzing GTEx was to increase our effective
power by maximizing the sample size in each tissue by
grouping samples that were otherwise transcriptionally
indistinguishable (Fagny et al. 2016, Lopes-Ramos et al.
2016; Sonawane et al. 2017; Chen et al. 2016).

We first grouped samples based on GTEx-annotated
subregions (labeled SMTS) by taking, for example, all
skin-derived samples. We excluded the X, Y, and mito-
chondrial genes, identified the 1000 most variable auto-
somal genes, and performed PCoA using Euclidean
distance on the log2-transformed raw count expression
data (see Fig. 2 and Additional file 3: Figure S2). We chose
the 1000 most variable genes instead of all genes for com-
putational efficiency; results were relatively insensitive to
the absolute number of genes used (Additional file 1).
We then visually inspected the PCoA plots to deter-

mine whether subregions were distinguishable from each
other based on the two first PCs. If they were, the subre-
gions were considered independent tissues in all down-
stream analyses (for example, transverse and sigmoid
colon were considered distinct). Those regions that
could not be resolved were merged to improve the
power of downstream analyses. If we observed complex
patterns, as described for brain below, we performed
multiple rounds of PCoA analysis to assure that we had
identified transcriptionally distinct regions. In many
cases, we found clear separations between tissue subre-
gions, such as for the various arterial or esophageal sub-
regions, which we retained as separate tissues. However,
for other tissues, such as sun-exposed and non-exposed
skin, we found no distinguishable difference in the PCoA
plots (Fig. 2) and therefore merged these into a single
tissue for downstream analysis.
The greatest consolidation occurred in brain, where

GTEx had sampled 13 subregions. In examining the
PCoA plots, we found that samples from cerebellum and
cerebellar hemisphere subregions were indistinguishable
from each other, but these were very distinct from the
other brain regions. We merged the cerebellum and
cerebellar hemisphere subregions (brain cerebellum) and
removed these from the remaining brain subregions. We

Fig. 2 PCoA analysis allows for grouping of subregions for greater power. Scatterplots of the first and second principal coordinates from principal
coordinate analysis on major tissue regions. a Aorta, coronary artery, and tibial artery form distinct clusters. b Skin samples from two regions group
together but are distinct from fibroblast cell lines, a result that holds up (c) when removing the fibroblasts
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then performed a second PCoA on the remaining re-
gions. We found that basal ganglia (brain basal ganglia)
clustered separately from the remaining subregions that
did not further separate into other groups (brain other;
largely cortex, Additional file 3: Figure S2), leaving three
brain regions.
The PCoA clearly separated the fibroblast cell line

from skin (Fig. 2b-c and Additional file 3: Figure S2) and
the lymphoblastoid cell line from blood (Additional file 3:
Figure S2). This result is consistent with previous re-
ports that indicate that cell line generation and growth
in culture media produces profound changes in gene ex-
pression [13, 14]). A detailed transcriptomic and net-
work analysis of these cell lines and their tissues of
origin is provided in [14].
By merging subregions, we increased the effective

sample size of several of the tissues allowing down-
stream analyses, such as eQTL analysis [15] that would
not have been otherwise possible. This increase in power
was also important in the reconstruction of gene regula-
tory networks [14, 16–18]. The results of our tissue clus-
tering on the GTEx data are summarized in Table 1.
We used the YARN routines checkTissuesToMerge

and plotCMDS functions to generate the PC plots as
shown in Fig. 2 and Additional file 3: Figure S2. Similar
to checking for misannotation, one can visually inspect
the overlap of subregions to determine whether data
from similar tissues should be merged or kept separate.
We recommend checking multiple components and in-
vestigating components up until at least 90% of the vari-
ability is explained. Multiple components can be plotted
using the plotCMDS function in combination with the R
base function, pairs.

Gene selection and filtering for normalization and testing
Most commonly used normalization methods adjust
gene expression levels using a common gene set under
the assumption that the general expression distributions
are roughly the same across samples. With RNA-Seq ex-
periments, the selection of an appropriate gene set with
which to carry out normalization is more challenging
because, even when comparing related samples, each
sample may have a slightly different subset of expressed
genes. Because of this, filtering methods are essential in
preprocessing RNA-Seq data to remove noisy measure-
ments and increase power without biasing differential
expression results [19].
In the GTEx expression data we found many “tissue-

specific” genes that were expressed in only a single or a
small number of tissues (Additional file 1, Additional file 4:
Figure S3). We tested two different filtering methods: (1):
a “tissue-aware” manner in an unsupervised approach rec-
ommended by Anders et al. (Anders et al. 2013), and (2)
filtering in a “tissue-agnostic” manner to remove genes

with less than one count per million (CPM) in half of all
samples (Additional file 1).
The tissue-aware method filters genes with less than

one CPM in fewer than half of the number of samples of
the smallest set of related samples (for GTEx, at least 18
samples since the “smallest” number of samples in any
tissue is 36); this leaves 30,333 genes out of the 55,019
mapped transcripts for which reads are available in
GTEx. Of these 30,333, 60% (18,328) are classified as
protein coding genes and 11% (3220) are pseudogenes.
This contrasts with the tissue-agnostic method in which
genes are removed if they appear in fewer than half of the
total number of samples in the data set; this filtering
method retains only 15,480 genes, of which 84%
(12,994) are protein coding and 4% (659) are pseudo-
genes (Additional file 1, Additional file 5: Table S1,
Additional file 6: Figure S4).
We tested these filtering strategies and compared the

results to unfiltered data by assessing differential expres-
sion between whole blood (n = 444) and lung (n = 360),
two tissues with relatively large numbers of samples, and
for which we expect to find many differentially
expressed genes (Additional file 1). Following filtering,
we normalized the data using qsmooth and used voom,
from Bioconductor R package limma [20], to identify dif-
ferentially expressed genes.
We found the smallest fraction of differentially

expressed genes in the unfiltered data set (54%). The
tissue-agnostic filtering identified the largest fraction
(80%), but many of the differentially expressed genes
were noncoding genes. The tissue-aware filtered data
yielded an intermediate fraction of differentially
expressed genes (69%), but the greatest number of differ-
entially expressed protein coding genes. Consequently,
we chose to use tissue-aware filtering as it provides for
identification of tissue-specific, differentially expressed
genes (Additional file 1). Using this filtering with the
GTEx data reduced the number of mapped genes from
55,003 to 30,333 genes that were advanced to the next
step in the pipeline.
Figure 3 shows examples of genes related to tissue-

specific function or disease that would have been lost
using the tissue-agnostic approach that are retained by
the tissue-aware filtering. MUC7 (Fig. 3a) is overex-
pressed in the minor salivary gland and has been associ-
ated with asthma. REG3A (Fig. 3b) is overexpressed in
pancreas and small intestine and has been associated
with cystic fibrosis and pancreatitis. AHSG (Fig. 3c) is
overexpressed in the liver and has been associated with
uremia and liver cirrhosis. GKN1 (Fig. 3d) is overex-
pressed in the stomach and is downregulated in gastric
cancer tissue as compared to normal gastric mucosa.
SMCP (Fig. 3e) is overexpressed in the testis, where it is
involved in sperm motility. It is also linked to infertility

Paulson et al. BMC Bioinformatics  (2017) 18:437 Page 5 of 10



and tumorigenicity of cancer stem-cell populations
[21, 22]. NPPB (Fig. 3f ) is overexpressed in the heart
left ventricle and heart atrial appendage and has been
associated with systolic heart failure. Retaining such
tissue-specific genes is crucial for understanding the
relationship between gene expression and tissue-level
phenotypes and understanding their impact on the
complex biological system [17].
In YARN, multiple functions are available for filtering

lowly expressed genes, including, filterLowGenes, filter-
MissingGenes, and filterGenes. These functions allow
for filtering genes by either a minimum CPM threshold
(tissue-aware/agnostic approach), those that are missing,
or those mapping to a specific chromosome, respect-
ively. The use of these functions helps retain tissue-
specific genes while removing extremely low abundance
genes that may represent sequencing noise [19, 23]
(Additional file 1).

Tissue-aware normalization
Normalization is one of the most critical steps in data pre-
processing and there are many normalization approaches
that have been used in expression data analysis. Many early
and widely used methods for RNA-Seq normalization were
based on scaling [24–26]. More recently developed

Table 1 Breakdown of tissues, assigned groups, abbreviations
used, and sample sizes

Tissue Abbreviation Subtissue Sample
size

Adipose
subcutaneous

ADS Adipose -
Subcutaneous

380

Adipose visceral ADV Adipose - Visceral
(Omentum)

234

Adrenal gland ARG Adrenal Gland 159

Artery aorta ATA Artery - Aorta 247

Artery coronary ATC Artery - Coronary 140

Artery tibial ATT Artery - Tibial 357

Brain other BRO Brain - Amygdala 779

Brain - Anterior
cingulate
cortex (BA24)

Brain - Cortex

Brain - Frontal Cortex
(BA9)

Brain - Hippocampus

Brain - Hypothalamus

Brain - Spinal cord
(cervical c-1)

Brain - Substantia nigra

Brain cerebellum BRC Brain - Cerebellar
Hemisphere

254

Brain - Cerebellum

Brain basal ganglia BRB Brain - Caudate
(basal ganglia)

360

Brain - Nucleus
accumbens
(basal ganglia)

Brain - Putamen
(basal ganglia)

Breast BST Breast - Mammary
Tissue

217

Lymphoblastoid cell
line

LCL Cells - EBV-transformed
lymphocytes

132

Fibroblast cell line FIB Cells - Transformed
fibroblasts

305

Colon sigmoid CLS Colon - Sigmoid 173

Colon transverse CLT Colon - Transverse 203

Gastroesophageal
junction

GEJ Esophagus -
Gastroesophageal
Junction

176

Esophagus mucosa EMC Esophagus - Mucosa 330

Esophagus
muscularis

EMS Esophagus -
Muscularis

283

Heart atrial
appendage

HRA Heart - Atrial
Appendage

217

Heart left ventricle HRV Heart - Left Ventricle 267

Kidney cortex KDN Kidney Cortex 36

Liver LVR Liver 137

Table 1 Breakdown of tissues, assigned groups, abbreviations
used, and sample sizes (Continued)
Tissue Abbreviation Subtissue Sample

size

Lung LNG Lung 360

Minor salivary
gland

MSG Minor Salivary
Gland

70

Skeletal muscle SMU Muscle - Skeletal 469

Tibial nerve TNV Nerve - Tibial 334

Ovary OVR Ovary 108

Pancreas PNC Pancreas 193

Pituitary PIT Pituitary 124

Prostate PRS Prostate 119

Skin SKN Skin - Not Sun
Exposed (Suprapubic)

661

Skin - Sun Exposed
(Lower leg)

Intestine terminal
ileum

ITI Small Intestine -
Terminal Ileum

104

Spleen SPL Spleen 118

Stomach STM Stomach 204

Testis TST Testis 199

Thyroid THY Thyroid 355

Uterus UTR Uterus 90

Vagina VGN Vagina 97

Whole blood WBL Whole Blood 444
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methods such as voom [20] use quantile normalization,
which assumes that all samples should express nearly iden-
tical sets of genes with similar distributions of expression
levels. Although quantile normalization has proven to be a
robust approach in many microarray applications, its as-
sumptions break down when analyzing samples in which
gene expression can be expected to be substantially differ-
ent among members.
Quantile normalization forces every sample’s statistical

distribution to the reference’s distribution where the ref-
erence is defined as the average of all sample count
quantiles. When the distributional shapes are dissimilar
across tissues, the reference is not representative of any
particular tissue and scaling of quantiles is dependent on
the largest tissue’s distribution. In GTEx, we wanted to
use a single normalization method for all tissues. Here,
with a very diverse set of tissues, the assumptions
underlying quantile normalization clearly break down
(Additional file 4: Figure S3).
The qsmooth [27] normalization method is a

generalization of quantile normalization that normalizes
all samples together but relaxes the assumption that the
statistical count distribution should be similar across all

samples and instead assumes only that it is similar in
each phenotypic group (as one might expect for different
tissues in GTEx). We used qsmooth to normalize the
GTEx expression data where phenotypic groups were
determined using the 38 “merged” tissues that resulted
from our quality control assessment.
We compared the effects of “full” quantile normalization

to the “tissue-specific” strategy implemented in qsmooth.
We observed much larger root mean squared errors
(RMSE) using an all-sample reference (“full” quantile
normalization) than we saw using qsmooth’s tissue-
specific references (Fig. 4). The root mean square error es-
timates the divergence of transcriptome distributions from
the assumed transcriptome reference distribution. The
more the RMSE varies by tissue, the larger the number of
tissue-specific counts. Figure 4 suggests that global quan-
tile normalization disproportionately weights and biases
tissue-specific transcripts based on other tissues’ propor-
tion of zeros in the distribution and tissue sample size
(Additional file 1, Additional file 7: Figure S5). Both
qsmooth (smooth quantile normalization) and full quan-
tile normalization (over every specific tissue) are imple-
mented in YARN’s normalizeTissueAware function.

Fig. 3 Six highly expressed tissue-specific genes that are removed upon tissue-agnostic filtering. Boxplots of continuity-corrected log2 counts for
six tissue-specific genes (a-f). These genes are retained when considering tissue-specificity and not when filtering in an unsupervised manner.
Colors represent different tissues. Examples include (a) MUC7, (b) REG3A, (c) AHSG, (d) GKN1, (e) SMCP, and (f) NPPB
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Discussion
Large-scale transcriptional studies, such as GTEx, present
unique opportunities to compare expression in a relatively
large population and across a large number of tissues.
However, as with all analyses of gene expression, it re-
quires careful quality assessment, gene filtering, and
normalization if meaningful conclusions are to be drawn
from the data. We developed a simple and robust software
pipeline, YARN, to allow us to perform quality control as-
sessment of the metadata associated with a large, hetero-
geneous data sets such as the collection of RNA-Seq
assays that are available as part of the GTEx v6 release.
YARN was designed to process RNA-Seq data to allow

comparisons between diverse conditions and consists of
four basic steps: quality assessment filtering to remove
questionable samples, comparison of “related” sample
groups to merge them or split them into separate
groups, filtering genes that have too few counts while
preserving tissue-specific genes, and normalizing the
data. For each step, YARN contains multiple options that
allow user to adapt the pipeline for their use.
In our analysis of GTEx v6 data, we began by using PCoA

to filter samples based on misidentification by sex. We then
used PCoA to compare samples from the same general
body site so as to merge those that were indistinguishable.
Next, we used a tissue-aware filtering method to retain
genes that were expressed in one or a small number of tis-
sues, while eliminating those in too few samples to perform
a reliable normalization. Finally, we used qsmooth to per-
form a tissue-aware normalization (Additional file 1).
This pipeline allowed us to identify one individual who

was misidentified by sex, to reduce the 53 sampling site
conditions to 38 non-overlapping tissues, eliminated

24,670 genes for which there was insufficient data to
perform a reasonable normalization or subsequent ana-
lysis, and to produce normalized data for 30,333 genes
in 9435 samples distributed across 38 tissues. The result
of applying YARN is a data set in which general expres-
sion levels are comparable between tissues, while still
preserving information regarding the tissue-specific ex-
pression of genes. This comparability allowed us to use
the normalized data in a wide range of analyses that
compared processes across tissues [14, 15, 17, 18].

Conclusions
YARN is a flexible software pipeline designed to address
a problem that is becoming increasingly challen-
ging—that of normalizing increasingly large, complex,
heterogeneous data sets, often consisting of many sam-
ples representing many different physical states, pertur-
bations, or phenotype groups. YARN is implemented as
a Bioconductor package and is available under the open
source GPL v3 license at http://www.bioconductor.org/
packages/yarn.
The workflow includes numerous quantitative options

for filtering as well as tools for visual inspection of data to
allow users to understand the distributional and other char-
acteristics of the data. The Bioconductor vignette includes
sample skin data from GTEx that can be used to work
through as an example analysis. Example code to reproduce
the figures in this manuscript is available through GitHub
at: https://github.com/QuackenbushLab/normFigures. We
intend to actively maintain YARN, adding additional fea-
tures and integrating it with differential gene expression
and analysis tools in Bioconductor.

Fig. 4 Using a tissue-defined reference lowers root mean squared error. Boxplots of the RMSE comparing the log-transformed quantiles of each
sample to the reference defined using (left) all tissues and samples and the (right) reference defined using samples of the same tissue
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Availability and requirements
Project name: Yet Another RNA Normalization software
pipeline (YARN).
Project home page: http://bioconductor.org/packages/

yarn
Operating system(s): Platform independent.
Programming language: R.
Other requirements: Dependencies: Biobase. Imports:

biomaRt, downloader, edgeR, gplots, graphics, limma,
matrixStats, preprocessCore, readr, RColorBrewer, stats,
quantro. Suggests: knitr, rmarkdown, testthat (> = 0.8).
License: GPLv3.
Any restrictions to use by non-academics: None.

Additional files

Additional file 1: Supplementary Material for Tissue-aware RNA-Seq
processing and normalization for heterogeneous and sparse data.
(DOCX 37 kb)

Additional file 2: Figure S1. PCoA analysis of multiple tissues on Y-
chromosomal genes can highlight poor sex annotation, related to Fig. 1
and misannotation section. Scatterplots of the first and second principal
components from principal component analysis on all major tissue
regions. We plotted data from 13 tissue regions from the GTEx con-
sortium, coloring the annotated sex of each sample. Enlarged is sam-
ple GTEX-11ILO that clusters with male samples in every tissue
despite being annotated as being from a female; we later learned
that this research subject was genetically male. (PDF 240 kb)

Additional file 3: Figure S2. PCoA analysis of multiple tissue groups,
related to Figs. 1, 2 and merging conditions section. Scatterplots of the
first and second principal components from principal component analysis
on all major tissue groups colored by sampled region. The grouping in
these plots led us to either merge regions into a single group or to keep
them separate. The final tissue set used for further analysis is summarized
in Table 1. (PDF 73 kb)

Additional file 4: Figure S3. Animated density plots of log-transformed
counts when including more tissues, related to Fig. 1. GIF animation of
density plots when including 10 largest sample size tissues. As more
samples are included we observe a larger fraction of tissue-specific genes
as can be seen by the growing spike-in the distribution at zero within
each tissue. (GIF 3641 kb)

Additional file 5: Table S1. Breakdown of gene types remaining in
each data set after different filtering approaches. Filtering in a tissue-
specific manner, we keep genes that appear in a least half the number of
samples present in of the smallest phenotype group (for GTEx, at least 18
samples since the “smallest” tissue has 36 total samples); this leaves 30,333
genes of which 60% (18,328) are classified as protein coding genes and 11%
(3220) are pseudogenes. This contrasts with our tissue-agnostic method in
which genes are removed if they appear in fewer than half of the samples
in the data set; this retains only 15,480 genes for which 84% (12,994) are
protein coding, and 4% (659) are pseudogenes. (XLSX 36 kb)

Additional file 6: Figure S4. Heatmap of the 15 most variable genes in
the GTEx heart samples post filtering, related to Figs. 1 and 3. Heatmap
of the 15 most variable genes in the GTEx heart samples. Left, top 15
genes were chosen in an unsupervised manner using the normalized
gene expression after a stringent filtering in a tissue-agnostic manner.
Right, the 15 most variable genes were chosen in an unsupervised
manner using the normalized gene expression after tissue-specific
filtering. (PDF 277 kb)

Additional file 7: Figure S5. Count distributions pre- and post-
normalization, related to Figs. 1 and 4. Density plots of gene count
distributions. Left to right: log2 raw expression distribution of samples

pre-normalization; count distribution for each sample normalized in a
tissue-aware manner. Colors represent different tissues. (PDF 7035 kb)
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